

- Consider the function f defined by $f(x) = \frac{x^2}{x^2 1}$. (C) its representative curve in an orthonormal system $(0; \vec{\imath}; \vec{\jmath})$.
- 1. Determine the domain of definition D of the function f and calculate the limits of f at the boundaries of D.

$$x^{2} - 1 \neq 0$$
 ; $x^{2} \neq 1$; $x \neq \pm 1$
So $D =]-\infty; -1[\cup] - 1; 1[\cup]1; +\infty[$
 $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x^{2}}{x^{2}} = 1$ so $y = 1$ is a horizontal asymptote.
 $\lim_{x \to 1^{+}} f(x) = \frac{1}{0^{+}} = +\infty$; $\lim_{x \to 1^{-}} f(x) = \frac{1}{0^{-}} = -\infty$

So x = 1 is a vertical asymptote.

$$\lim_{x \to -1^+} f(x) = \frac{1}{0^-} = -\infty \; ; \; \lim_{x \to -1^-} f(x) = \frac{1}{0^+} = +\infty$$

So x = -1 is a vertical asymptote

- Consider the function f defined by $f(x) = \frac{x^2}{x^2 1}$. (C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.
- 2. Study the parity of *f* and interpret graphically.

Domain is
$$D =]-\infty; -1[\cup]-1; 1[\cup]1; +\infty[$$
 is centered at 0.

$$f(-x) = \frac{(-x)^2}{(-x)^2 - 1} = \frac{x^2}{x^2 - 1} = f(x)$$

So *f* is an even function.

Graphical interpretation:

(y'y) is an axis of symmetry

Consider the function f defined by $f(x) = \frac{x^2}{x^2 - 1}$. (C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

3. Study the sign of f(x). Interpret graphically.

	$\boldsymbol{\chi}$		- 1	0		1	
-	χ^2	+		+ 0	+		+
x^2	- 1	+		_	_		+
f	f(x)	+		— 0	_		+

$$x \in]-\infty; -1[\cup]1; +\infty[:f(x) > 0]$$
(C) is above $(x'x)$
 $x \in]-1; 0[\cup]0; 1[:f(x) < 0]$
(C) is below $(x'x)$
 $x = 0: f(x) = 0$
(C) cuts $(x'x)$ at $(0;0)$

Consider the function f defined by $f(x) = \frac{x^2}{x^2 - 1}$. (C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

4. Calculate f'(x) and set up the table of variations of the function f.

$$f'(x) = \frac{2x(x^2-1)-x^2\times 2x}{(x^2-1)^2} = \frac{2x(x^2-1-x^2)}{(x^2-1)^2} = \frac{-2x}{(x^2-1)^2}$$
$$f'(x) = 0 \; ; \; -2x = 0 \; ; \; x = 0 \; ; \; y = 0$$

Consider the function f defined by $f(x) = \frac{x^2}{x^2 - 1}$. (C) its representative curve in $\frac{x^2}{x^2 - 1}$.

an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C).

- > Plot the asymptotes.
- > Plot the extrema
- > P.P.: (0;0)
- Draw based on the table of variations.

x	_	1	0	1	
f'(x)	+	+	0	-	_
f(x)	+∞, 1		∕ 0 `		+ ∞

Consider the function f defined by $f(x) = \frac{x^2}{x^2 - 1}$. (C) its representative curve in ESA

an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C).

x		- 1		0		1	
f'(x)	+		+	0	_		_
f(x)	+	∞, ∥		~ 0 `			+∞
	1		-∞		-∝		1
	1				30	,	

The function starts from the horizontal asymptote then moves far from it.

an orthonormal system $(O; \bar{t}; j)$. 5. Plot (C).

Consider the function f defined by f(x)

To work precisely, we can plot a helping point:

For
$$x = -2$$
; $y = \frac{4}{4-1} = \frac{4}{3} \approx 1.3$

The function starts from the

horizontal asymptote then moves for from it

Consider the function f defined by $f(x) = \frac{x^2}{x^2 - 1}$. (C) its representative curve in ESA

an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C).

x		- 1		0		1	
f'(x)	+		+	0	_		_
f(x)	+0	9-		~ 0 `			$+\infty$
	1		·∞		-∞		1
	_						

The function moves toward the vertical asymptote x = -1.

Consider the function f defined by $f(x) = \frac{x^2}{x^2-1}$. (C) its representative cu

Consider the function f defined by $f(x) = \frac{x^2}{x^2 - 1}$. (C) its representative curve in Equation 1.

an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C).

\boldsymbol{x}	- 1	0	1	
f'(x) +		+ 0	-	_
f(x)	+∞,	<u></u>		+∞
1)	-∞	1
1				

The function moves away the vertical asymptote x = -1 toward the extremum (0,0)

Consider the function f defined by $f(x) = \frac{x^2}{x^2-1}$. (C) its representative cu

The function moves away the vertical asymptote x = -1 toward the extremum (0,0)

Consider the function f defined by $f(x) = \frac{x^2}{x^2 - 1}$. (C) its representative curve in Example 2.

an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C).

\boldsymbol{x}	-	- 1		0		1	
f'(x)	+		+	0	_		_
f(x)	+∞,			~ 0 `			$+\infty$
	1		∞		-∞		1
	•				1		

The function moves toward the vertical asymptote x = 1 from the extremum (0,0)

Consider the function f defined by $f(x) = \frac{x^2}{x^2-1}$. (C) its representative cu

an orthonormal system $(0; \vec{\imath}; j)$.

Plot (C).

f(x) + 0 - -

The function moves toward the vertical asymptote x = 1 from the

extremum (0,0)

Consider the function f defined by $f(x) = \frac{x^2}{x^2 - 1}$. (C) its representative curve in $\frac{x^2}{x^2 - 1}$.

an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C).

x		- 1		0		1	
f'(x)	+		+	0	_		_
f(x)	+α	7		∞ 0 `			+∞
	1		∞		-∞		1

The function moves away the vertical asymptote x = 1 toward the horizontal asymptote y = 1

Consider the function f defined by $f(x) = \frac{x^2}{x^2-1}$. (C) its representative c

an orthonormal system $(O; \vec{\imath}; j)$. 5. Plot (C).

Place a helping point to draw precisely.

You can benefit from (y'y) since it is an axis of symmetry

The function moves away the vertical asymptote x = 1 toward the horizontal asymptote y = 1

